A proof of Weierstrass approximation theorem
Incorrect Password!
No content to display!
U2FsdGVkX180TTN7M8FDLYCKwqGg8+j19MwXTLQgaZZ14ChMj3LctZIvSu8mYgsPXzhBFKxsR8NK+tgJkJ6nbtaaIu7eKSkiOrJMSOX9yrpSJOXqpGA3bBFseObXeXgO9KC1dg6vV4Nm1F+3nUzaGhonrlMP8QAqtLrLcZ1c8JaJ5YIUR2aC34p71ULGSWmooTFVpKpiIxJfJa/WPbmhYKNpYgeJobpn4OEYKxNtDmMQ/Y81uz31RDKYshD+0O7Vh5+NGP3AVlNNPFTqwIr1W8tdyEftS7HXOEwVO0dKdCQssGsYeNVovUJsPRiR2gTwP37EsXpWtzbHiwCKjzgCr1p/pehIgCTT7Ypr4746dLOzHHfeRskFPK0DHUcOLLNYNw/F9OCp1MHhzEq1CsTLoDRslMWWkvlZ3kSAkTPVECk8NEB0Z4W4E53g6ivrFRN+Gh3/ZFlI+kU8eouCLGTD9j2kOlYzzmEsePw6uoP7UzMF0zEWKnJvqLT5llIeaKjVN+9h3m0caBiIB04VEwP822JLT8Bp82lDEayu5CXhhVMorvHOp1/i2Abi8bjvn+GoXhj5z/FcZaXVVmmSJP0Ejw3cx3oWe4dEUOrhiHbUr3plAyigywgHoKlHELicJURx2/T1pLlihz55pNzywLkou7GE1LxDzCn+qKrnCq/lYI2eNLdF4sBaD3LMHvMHWLcia4WjN3UYPgm03jmfYdwZgUC5cdX3HHS9kIj1yMysZT9nYyE63WaItT5KnXuEs0wR4n4q9xE0o9n2ujvTt9lvfB4qQt/Fu3cRj0fGUhyOALw/rV8NudJSgevnMRvUyc5l/JujrDNr/INfjmfHTZqu4n1W4GBotnamSjbqUkLDDP0BMFMqu1/CycwJGjE7V7fGO3o/T+vFBdRyaYFgLK1ZuyduAcCiaTkpKTZdGEkA8J5N9VQKguJwZvE/HNnPB1++1MRsO71fRYLxbAlfmFZustCTw3olOhYZQjQg8xZJKKiBOt2rxTV6UdXioyrU6qADU0B8ka6svGYavnAp/72uXAjDparp09tssc51SgYp3789NqM6uD+TxnhABZ900NHu+PVN4/TnI3fgwh+mOc1RXWKqc+gzABaCbbP54wCOkp3WMmMh2qOtF0QyWghhSZbeoT6XhGIdmL7A3Dm6EM+76fhZstHpOoN56p+m0eTze9P8NExpCUsawkEumL3BWBRK3s0hf2aVpocYuDihqB0+V6577pB2VITHScrI+kvt6nWaap3P8pBvuO3HgCEudA6ruVPXw8NdEBlNCTHm4tW7AQaBuPBpsZ5PgoUj8Itnn6cxHctIVa5j6YcN6Ex0+K5keZaaFCFrw+mR5W86KO4cLNz/JTE9qwZZT7WJxOTV6ooEZlMLHsoKD1f4uzZQMbm6vgFurX4QIydk8I6ykymva6I5/HMiq/BPAfhraHlt0dVcN/LIWWR+INg7PKOLX50aE8VqsU6RiMfvpWI++Dbjo95huwkzHUR7vsMoufaaFEU51qNQBuwQ0Xh1BXEE3VJVVO62f9cWAyOatcVc94q+bWNddtCQUvNKlPUOiYDb5HJNaw9MWn/C03ZVIH/AMzbZTA74VMPN9ZOHpQx4GDSxf/kl2WwIZj8DXMXsmPCT7WYnePrwCoibVsHBnklEubLDTyRmR1NG5PR9k6XavHzHPhG0ye2qfPoOMifsLLQiqc6rQGAdzK6Z09adF4IPkDBUj/iFgECkZ/vaG4kftIvnYcfOjV+n8TXhQFtRFKfXLRp1vr1b2E1e9rgRWeHof6BTe5WAjiOhgF6hn85jQsdani3SRir8ej/K/mCaq7/s+D/zhQG8mO7dXeMiCuMvnv5nGpBevoogdnoGbDIu4/UGPeryGoJNUGdU3xXnknU22SwbZloLm+BGTDtahfeDUDkvNdhC1BGd71nPhY+FJ/ZTzVq+wMVCqkWXuSotzpg8lwXIcnjnNjxssWrCHXgwDirWFExxqWD5JtS8UkPJvj5N1PKIlenBV3kSvRbIl1pqDKjnC5U0zOX/k8HbDt9J6N85EIwLoR0iF4TxHiAMyceSRH8v7lut/4JDaAVzkUcN0UHgePnQBuGcZzKAjNz/go3L3qXvTEzwcY0dv9VEXgXyIlL2wumC9KlAdxLijhheJr3x1cE6hhIWhTNcbUYSYnl8BW3WemQ9iZp4HCA/QA7PiioNbqL6HsEg4f7BaqZ259rvrO1ioqcJspi+hp8n4dZWn2Te070Hb5cvTmSt1yud8/DG3eKGFywICeLS3Lop2RAk5bK72Z5seJEow3vKXqH9naWjdx318EclxOn58ZYoK4AHbf1OwbD9VeXjIlyfAJ2qhpCW5FfLbkWHgJEcR8RwX278oiFq/Vhgv15NwRw32ofZdhA09ZtnpgLxQDs5iLHNrPJ49sQci87rInaEtyN6Ci8j0jcdxDiqQK+NjJGynSZl1HrtsiwBWPY9Z3Ba4UQywobFBbeTWOTkdW5SwmvnScSnnSTwu6J36GeYhCwCneeGa3Yyopf9vbg7ISPDRUxJhkam8trc8eycU3oVlT9UkVmsBx4r228crGXOn61jxT83Q5Gm+Jd24pTW9wExkMgDs59VoKomUuttpc+6UBvnDuPW3yeWN1oxV7a6ZS6oWu+QJHSvH8ogSPNj9jlxlUGWdu+joHYp73moFbegl6MFPoqGoLlcGyINMGj5HrUZdsLuIvmNnXc8dBEdZ1lqwnPrAJJJr9VRfvdv9tiBSufAKRlYP+S+kuKtrYnm6hxaBa+dglQK35vxHEdJcHr8np4KpdAIkasY9NZ0ymG82CfozxsBHmxL5ybeyqY6nMFuO7KKyIeIK7A4Zj1zA6703GfvlqOadY/WGelSYf/G0v7jHye5GgpZLUNGQ7U/akOmxamVHYjp3wAcNpOgUxuWQl5lj9nAaopnSj3jTL8jCf3hlTr/vWdk4Z6m7/yRAEGoilyi0Y+McpjRSY8L20jY/HXVWv834jKusscNJt2S2GxT66Qii8dBp+wi8vXzyOvmIKCb3YPM8rQwZPXLdHaN+ZQbe4tT3uBm5bEOBfCpYQWuYeB/GfLUCEVWK3GyoehBVs8Ir0xmRTnBRmZ8aquddWHgVjuP57o65SpQq+blQkQqJZogDeGpiaRPDG5JSAV3a97EK+k1HXerFco4JipFsOzRPKeYmLyFgiGarWBXZbcFzlrVWnQ/ooSG2Keo+xe/jhpz8dBN0Oi2Mh9Jmt0jT0Kp6jy5aiTC4hhVoHXx6ctbtwlWTYDuXV6Eqay/m2G40HeLyP4CUevnHt/bvx8RmvHmzUUcYnMNW28CMpSnwnmYcOafxBGy8c9nVEn3GBjtKWwd/w5FmbGyGkpo8AAIfzy/A5NFBLCqEyugstKZgj3RuqENkoL52Tvpvu2fUmObkyQjScHisQAB9yBu/7PEuOuPdUNdneUoW7a86xdJYpoGk+/FExMAFG1/myxre4c+wIZMFMQMDDjTx5qofFEA5CP5pwqwL3olTaD8Ipm+Z8W6T/Zj2a5MJQKcW/yJSCx5Kk9X6ArlI7CRD9HdnErbv5/qCu+RSciAFqF0dHS0H2FuhWUMJImA420V2T0lzYZVfl8xhy6wLVcvtplFXsUIpmNeYRugn2ykFL9B1ozfxzpP1maB6brMjMQ0IYnwwyBPHqv7gzPYt0E8LLrrPJNKahYa5zJgkmRsFP43Q1sObVXf0uEV/mHv1Iur12GhzmZ8dX6XHU1xOOeEam0BwA+LkLTB3xPDbdVlKlcIaXDhA3VhrHy4qHqCjJEmHYpAJwR8TzAV1A/RKWBhLDW7YE10yB/N+ryexOlde1vdJz2VT1z9xXBRiYUixTNc7OlsV20AZAD8AXnbqyocTXls2ykYevd/VvIsAV+BRtW33cQtDFSLmKfLGCWaECnVHKstT5F4s8HGuwGfVgMaQh/aUYvs/mOMNY7Gz3//pm8uPLb/EwMeTW3nZNz/tTY1jrKZ4UBeMPukQ+5zj+boebud3hWIQWGPzqoQSgWyY43AqYlx6h8wqLdXLwZwK+LI097aIKRdh9/pAGZSo6cdmdYy3VSZ3XJzGIxhb+z/U6Z5Z+BKkW96/cQTqB+qUqL9gjVlQx/mpMdHItn8I0D0AwB3ab7fcgrh5wz+lGNU9/6igMF4dA+UltRtYRXrlGFUA6mDUgCO60lJBUdwsrBC3c9CqggE5Qr5daz6jZ3ACFDoJ3tIefrKKtOsqBfdCmRoRHTOuXmFfns7izGrUH207NzB08BGVMe5oxXWobdi6ekKKrEA2DGdCKLjFBFR6eWU9qTx61y4cHodruxxseMkK6B/8EWXIK7smFMI4nQvEiX09H4yzrfGoO1nV8awl5i0DOtT8HNy2419wfEcwlKEcL/GKtqzHpPukLjrio/eUvUZgDya1/jq0ji55op+jTfWYySCR84UMYe1jS8/65D8NJ6Nl9NdFH7VR1YuW+Dwn48TCcBI0Xa9hJTRJNBF8uFYAA1ZQtRpc/OqaCJphhkp55GC55R6jNw+GrApMedBUyiZQPXiMxpqloGCnkYsUJpmnTnurX6VZTVTDLHHO0JPe7jNDpZBJhGlc/3ramp7SNvlUfAuh9ev6aHi3Uw1rzE6Vf4kbSUA/gSy4rjISCfWyaxkhovGrX3U3lEoWXKuG/E8lycufOpNOx5tQMY+69rkncOzbtj1xyk6q0nk65aJJdL0Gy7Fiza1tfUc15Rsbkol2yY5Z5fciXRyAgs03lHWYWu2io1xyuezJMU5SB2vbq5Vyr5yjYTPRDxVBBiItlGyKkiBz0bXVuJjhFVc9lrmclPge91zeonvilXE39v1vJRNxVOM8llB7eep0MXGho6cZsogLdoLLOHM7GVtPuh00QiEPZe4Rw8IMnS/8Y/WOSKD0tivGihIYJWKLGXf/sztjyQsjdy8k6//LMLnp4ifnd0WTY6gfa1sGxJh6Zi+bj7Lqus+vTaER5YmwnoYhrezq0DxdRWDPqBJ2oFnPsVgTKfP/E4x0CCwEpzCmDqD8is2YJnHlVsYfXVFJIkKF016pcCyXg1+9Nr/VmkcuTcKULowRjowd2a946pEGviSXeE/bDwOMCTd0EVO3mP47py49VG06w7h+P7hzxpQRd/gHpcO8NVMxCjmF4M8DHddN8g1aCJjVZ37Sn7eSCXGJuYV6zgXgXKWSq9Q/tJhPB/i2hEfT65VKVQD87zBHMnd+2DiqKb/+iLumJyj41EoXW8SGIVZlhx+v2nJSRoPKERtQainL5lUgce7SGLXJpEdr29op3OKe1/9l/KftrbeFg/O7Pt1XqevjFn3AOr+b3zGzrzr2B2Pp4V32cMShHOl5ePVGw+opBFfr9Ty7MMyuqjFUZhXJXoqaGxYQnH8zjuxZxYhKCVdJ6OCYgZjQmDEJtlecv/18s45gyrAe2UIs1fS9nH7xZuWKq4Yn0w20IEhwY6t05tFg4e5U/h+J92+LdFTMARWAjBYcM1qt3e5C0yeG6u2Zlx2JNKCqPzrJ2WG5GNU4xOR0Ptvm4dsQYAtjmG5tgZ504TJaKhS51bieJEPl2XtFEZXJTPLY4Zhycu1/nedp8LlelWYD7fZw8jEssCEkopvouRGghCJhIN4PvI2n4H8qj7QupascAtxerH4TRHZ1zYrQeraWszPkPO3RF2DaAi6XM3zMJ0DIAN5fdMWRBnCnXMqxt6X4ARaxDW4Hxd7RFOfKBce2a/c/E8ETsqnYGa/YfI91+dMVmtvUh8FRz3x4xyNjU9bA/P6wFYrTDogG+Y+KJNa6AkQHQfPU7xVH0DT96422ZWzrEHtCQpfsf7AOxTyXOSrLiF/2cUWHEZac/+Vf9ujFOwUvrptCxTK49mIixD6lcAiy8XkFJkB8NTj5h9ie0DUKFvu+Yu9xzC3R0ycFWBhKGWZpI1fW5ODlK5zK0ugdb0041ps4nAS1Y2rXcugYGEJcRmOSc3SphJktLsBxiPN/wlWrMaNlkRhem3L7oVj0xGBUnYhZWC0UxI6W2tyvu0vAGAanT40FBWOKFH/xBD4TeTILOGCQbzUeG5AuvgEgNXrooWeSmpYpgnTu52SyfTQ+n6y39jSarIY8qa55ItRUO1TwpCCcD/znvmXbKgCPlby3+tlK9DLh4Txt9d8s1Y1sY9KrRB0FFF2KAazq6faG7FBeNm+0wSJNtRZyK/l0Yuzn5az6m5QbueFDkocykE3qyuvWBoblQPyiZuSQQVvAVRmAxhtMFmHaH6O7V2HJOcE5UA0+38szp6pwLVjG6prsGLsgavh8q7TsTUZRyDDYq5ioqhjk8rJONcmkBcyzzQwxlcJMYZxqJJJ1B1DledVUJ8DAc5EZRtFCFoKhjFhMYdkbA60MMSxCqO5SoFsGFNdgB0D2leL+MOEHY6MbEXnctnLv8JVTZgIGJ2Hxcy0RIhdzNWY/rvamn1+jgO+sobw+AnBfzzpRu1IAZgilTQ/SG2IXmI0tY8qzsomkpm+pm0HCRL5G097TTm7Ct2ELGn/pIqZo4EC5hTi+XNiX4pPiz6PJoBWsYlT4T7Vim9+wXQKiangQ/RYqv3Zfyj2/rcffO9CFpYVFX93S9CLYea1U1nXF49iGgWHVcPZd4rOKprngshfFh+lf0kK/ZbDtXL+6ZpiZrF+PaVVvvgK0ORG6nsqv3eRzcR48bU0wXxUZA7t0vk7l8JXrCE0RQKkOn4WPmwH79aV+bfD2JXiqZv8EC+3OGtyKJQRY+AyEP7wY1Es10GSXFW3/IIp6NfR8kYa1oeX2FjG2I5A93GYIFS6BNeNxptLrdSxf6u7JD0YiUq2livc+yQBGAGw/+yfE/aF9RcwZtU+8xoJlw7bi/yUkOUDt2G56Wk5Hi2T8ybqsy1tNWwSGpORAzXiKAssN7zA//k9UvSslfQzw8eG2tVzsX3zapjOWPUeO0aNVieixsrv+mIk7+v/WzZWGeHQqBH9bTSSgB9wzYjnKfo6RaxcHlE0tL35BS2qDzszy7+g+OJUYaSY833t8X3bWaKnttSTHnxRxtDjmyIUd1b8644nZ8CYgUdti00W1Ja0wrfGm7LUgSdgyuJG+UUjJjcYn1xZXq8xkgFqOfMvbfrPvQ0U2goxUr31wj3U+6OUQNo1zddNT8N+q78eeyFy9GJ/ie74lGrCwychznnP+7yWobCW74wdYSMl+ErV6Mn1eryD0oStvGxxNWDVu4A+TZ6QAxCTLZU0kqFEM0lwM4st3WPhA8RF68E+o6oFXdyAvY1S9KNqYRNlt79uXZWRRTvuZ2MNrHtkev1bGV7PaiCjakM30itcv1liF4IWkzg3mtIi1VQUlwf34Mmw/3MYBgbGK+2kTqieBV3KlcyT89D1bSOiHT8Iv2DP9BuD3igxrs6m2HXsUqpt7Ib7OKou/DXY/Pp0Y3BNMc0fsEM34iRyti1WFigP8nTf2F0yiZeWRoSmWTaechWSK2jOk/W1rikmywKWDZmmVdJOam5esuWoXjTrwvG9AU/pl490fIurQLIwcOlve7y2Lc2y+o7y5kvj67oGfxYMrxzuRKTgFmvXLPTWgQ5otAKAnfhUYNm4GOi6ms2MkI4d1vc7HzqC8xBMPPSNstZL1sFH/rdPBNc4+eK7SbV/yf6IOsTQYReoEdA6Valf8vdayuWNxSyUptzAIDf954BaCqAOjxTrVJ9zLOVDtwRrQzWLcD4JxgQS9yWjpc6D0e7kZ/jpQyxiNU2Lo4DAQ3Ja1s0qSdZ4SWnrX5X9/kn4afS8K9ZBcWzqV2iqTrdCo+zcih+CDHnsLbEPd54vGxlE7Sa3+uvHIpXYE2etTnGStTcd4SK2GgE3SOy0WBzPeFtRkO0iSKdFAoKN5CtExwrjyTTXlA0vMWzvrBVFH07cb2gi166MMHBfQTm7cSgoVXkAvMo/4klVF4hI8gM7u142g/YeuoHrcHqRCTMyrxgwWOk70ZLBSDCoZZNm0bLrmmhPWoOlO54yrR8+YOdEmpyYdkZSrz6fzKT6IUB/Xguqn7FzBxoW4gaFS0dIzSfhtxRC5z2jlmLaYUWlCI1A8H3uJrZ40UuRDr1y2Bz/xWUegYPSv3BOtw7QzEs0iKp5kgTl5BBsmReBEqFwZsVjQU5U/ONpBZu9/ACXqm5TMqz6PW4apbqwQrnIC2CvD6ktqh7kt0sgglxMlY6v9oX0oq1GMLvT1BKvd8VgFHgRKW1qdqAB9LZraAReIXBDX8QNfiNOAU/JytUs/pQ3sK22jRB6O/pFuMU1IHmgQFaiCJqQQfxoYsH+oybZQaWT6eASc0hjjH947yNeiTe3mHcFl6wel0A5qvMcKyAsindFDdRB6s32QMBcsZEzhK4OkQ2o25feZzBuxgCTdvNuNXF865PdG6cLnOaTB31Yzbl7RKL+45o2GVlhBmCAe2bHajZ+a+SqbvNND1N+1YmmrW96w8b2DW0fBO75hSSu+pumH3ABwq5/TubrCO7V9yXPd+TyvNsidmhXY0SUXUrNGKvtCjyGycG4sdazf7yWtgqZENZ5AQmjkd3lGDNSLylAjWEtvb/btXdG1nsgWkrBV8qoAQwN9UirKP6WRGOivgRLQDr/XdwkKhycog/t5RGfvUrVaib7Bz26W+XM5wZ4zGDzo/Dhnp3GNavomArHYSKOLfv6EtmyFbs873bBv0wyIAQnQ534WUb92zdHHusFSByw4wgRd948D9seFKGVZiisNoisWsus62qGC/WJG7PaDnnYLoWzFy2bD0OJHliDOzKS8iUYbYxQ7+8bfFMf97ZmlppRl8puO3H/LWvCEteFLTFJVivuY3kFQ0UMH9SJFDlrASSl/i9q8v77hvucZPfzbwSgPWjCjreBpFHtG9L00UpTCNR6RDInoF7OiO4usGP/gTL6UTRO2T5QTmHIMyIx1vQxrwkILUEOlYGv6Ydm5CpOX9FV6WRq31vLAgez1laV+0/aTyxil9nDTWkiNsZhO1OZLUCoBLaRz5e7GRhUpITr4v45wHkXrJS9vrDxCAF4RQ5WUBlAdVbnNY1KuDL+GmwjH0aqGXjPJkBwqqPN6+r+V+O42dzj8yF5jxr1ZtJYDxdtx+Wr3dl67ELNeLLoG6yDcZqFYKnLWH21cQXBbqFuV7bqd1UYVsUDaWjuzqMakcgait9j08w+P4MFE7oIpeKidFsELRboIzUrs4HJaDcFHCGwli4zK/hOmBIuQJv2BNDZRHSMd7qC0p8TCVzdh1B78CQ9Hg0JU+0Lhlc+Kfnfs5ISn6lzfxnXo/S/jNeJYz79Opk6TtY6Ughh/cJTkUG+lG/RW9Kr5wsakCCbolGyeiiMe9n79f1CKNu/NlzgReOixLwnsMDx16RSYv/1AYlhMxQaC1aRNGUdy9WDJ7uxyTUNsFqS7swHKj5R2dOW/hnnhEvCx4NOU1Ce/3Ign3nF7S0c6diVfIH6y6r0Uzj2E+oyuE8OQh3eCzwfcAGg0wnswtO4/oM8c4vWQmE5eYWbrak4RuGS37I305yCsatFSTm0F1xXDd4p4CGiIKq3jDRr/LehUwNQHhRZn1mbyaOMTgwfcZG64BUk2NX0i74mQqSnduLF9qTyknvlgK9HgPSU4WFFvFXxXtHg1gcXosxSq43J5TrTjQS9rkMd1YQ7WMCGCgK54J4Oiwxn7UgIg/4Llt2svYjHLbfQQOvV1LT2DT8ongIZn8rpguZf/0wdgwy0+RJ7tb+jUfzP0M1ffkVTKrIg6FKnw+pzraHk24ebQPtR0PJOklm6LJOTejOoYNrFQyTMASeBIY7YO2m18aY7idGKVrpU/U/P+1KKQVK3d5yIi51FNtaJadjGTmGIQ2IzZWE0epoi+OlgDi7/yS+2nkDgLRKVhFsvl62UfaW5SGHaq/t2KbxyRPutxUYv6v5j88gWdRK71/GTghiIZC/1vEWd+rZZzfDoPThifkaJS+apyvBVMTFAmwJ2jwDeldeqPSNW+Py78kCvqq+QcokHILy+2AO0FNBr
A proof of Weierstrass approximation theorem
http://blog.sinkpad.tech/2017/06/16/A-proof-of-Weierstrass-approximation-theorem/
#大学
